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I. INTRODUCTION

As transistor sizes shrink, power consumption has increas-
ingly become a first-class design constraint [1] for modern
systems. Although co-optimizing power and performance is
important for a wide range of applications, including high
performance computing (HPC) and graph analytics, artificial
intelligence (AI) in particular is driving future system re-
quirements. In recent years, AI has transformed society with
significant improvements in speech recognition [2], image
classification [3]–[8], machine translation [9], autonomous
agents [10], language processing [11], [12], text genera-
tion [13], and other tasks [14]. This tremendous transformative
effect has been enabled by a virtuous synergy of (1) better
hardware systems, (2) larger datasets, and (3) improved AI
models (e.g., Transformers) and algorithms that further benefit
from more efficient hardware and larger datasets.

However, meeting the computational needs of AI appli-
cations and other important workloads is challenging. These
applications are ravenous, often requiring exponentially more
compute [15]. With the slowing of Moore’s Law and end of
Dennard’s Scaling, systems are increasingly turning towards
heterogeneous accelerators to scale performance, especially for
AI workloads. Accordingly, systems must also optimize their
increasingly heterogeneous systems and applications for power
consumption, without compromising performance.

To drive these efforts, we require a credible open-source in-
frastructure to study novel improvements to the existing state-
of-the-art and evaluate the potential of radical computer system
changes. Traditionally, developers rely on simulation and
modeling techniques to estimate a prototypes’ performance
and power consumption. While existing tools provide accurate
performance predictions, the tools for modeling power are
lacking. Low-level Spice models are accurate, but require
proprietary information and scale poorly to increasingly large,
complex systems. Tools built by extrapolating first-principles
models (e.g., CACTI [16], [17] and McPAT [18], [19]) have
not been updated in 8 years and are no longer representative.
Likewise, power analysis tools dependent on design tape outs
are time consuming, expensive, and prevent co-design from
happening early in the design process. Finally, state-of-the-art
tools like AccelWattch [20], [21], analytical models [22], and
machine learning models to predict power consumption [23]–
[25] often do not generalize, giving inaccurate results for even
minor configuration perturbations.

Part of the challenge is that these power models are often

tightly coupled to specific architectures. Thus, we need accu-
rate, generalizable, and usable power models to enable early-
stage research and development of next generation systems.
Accordingly, we propose developing new methodologies to
make it as easy to model power consumption as it is to
model performance (Figure 1). To address these challenges,
we propose creating a flexible power methodology that allows
architects to easily incorporate different power models at a
fine granularity in open-source simulators. In particular, we
focus on integrating this support into gem5, a widely used,
open-source, cycle-level computer system simulator, although
the ideas can also be applied to other simulators.

II. BACKGROUND

At its core, gem5 contains an event-driven simulation
engine [26], [27]. On top of this simulation engine gem5
implements a large number of models for system compo-
nents for CPUs (out-of-order designs, in-order designs, and
others), AMD and ARM GPUs [28], accelerators [29], [30],
various memories, on-chip interconnects, coherent caches,
I/O devices, and many others. Moreover, gem5 provides two
modes: Syscall Emulation (SE) and Full System (FS). SE
mode simulates an application’s user mode code in detail but
emulates the OS instead of simulating it in detail. Conversely,
FS mode simulates both the OS and user mode code in detail,
allowing users to study OS-architecture interactions.

The gem5 simulator also has some support for power
and thermal modeling [31]. For example, prior work has
added power models into gem5 for DRAM [32], networks-on-
chip [33], [34], ARM CPUs [35], or integrated McPAT [36].
However, like CACTI and McPAT themselves, some of these
models have not been updated in many years. Thus, while
these additions represent useful building blocks, none of them
provide support for modeling power consumption for the entire
system gem5 models. Moreover, many are tied to specific
models (e.g., McPAT) or vendors, limiting their flexibility. In
comparison, we seek to create a power modeling framework
that decouples which power model to use from how open
source simulators support power models.

III. PROPOSED APPROACH

Figure 1 demonstrates our overall approach. Like prior
work [19] we propose a hierarchical power model where
the overall system power combines the sum of the main
system components, each of which may have one or more
levels of sub-components. The user determines how many



Fig. 1: Proposed Hierarchical Power Model. Our changes are
under the blue line.

levels gem5 should output. However, unlike prior work our
approach separates how simulators (e.g., gem5) model power
consumption from which power model (e.g., CACTI, McPAT,
Spice) is used. We do this by creating a new interface (dotted
blue line, discussed further in Interface) that connects gem5’s
hierarchical power model (gem5 Side) to one or more power
models that a user may want to utilize to model an architec-
ture’s power consumption in gem5 (Power Model Side).
gem5 Side: If a user wants to define a new power model
in gem5, they must use gem5’s Python scripting interface to
define the behavior of each component’s power model. To
do this, each component must have a class describing its
power states (e.g., separate classes for the power behavior
when a component is on, off, or clock gated). For example,
in Figure 1 the user defines L1I$Power class for the L1
instruction cache. Within this class the dynamic power is the
summation of its’ three key components: MSHR accesses (for
misses) and data/tag accesses (for hits and misses). Similarly,
at higher levels of the hierarchical power model, the user must
specify what the key sub-components are and how they should
be summed together. This allows gem5’s to output power
information (stats) in summarized form for the higher levels
and detailed form for the lower levels.
Power Model Side: We will also integrate or create a variety
of power models. Some of these power models could be the
state-of-the-art approaches like AccelWattch, CACTI, McPAT,
or Spice. However, researchers can also to create their own
models (e.g., for a new accelerator). Ultimately, the model
must provide information (via the Interface) about the dy-
namic power and static power for each system component.

Collectively, this information will be passed via the interface
to each component’s power model class. For example, in
Figure 1, the power model tells the L1I$Power classes’
dynamic_power function about how the CPU’s instruction
cache should model the power for accessing an MSHR entry
(mshr_power), the power for accessing the instruction data
in the cache line (instr_power), and the energy for access-
ing the corresponding tag in the cache line (tag_power).
Although we envision the power models supplying this in-
formation such that gem5 can utilize this information on a
per access basis, since our approach flexibly represents the
power model in Python, alternatives are also possible. Similar
to gem5’s validated known good models [27] for system
configuration, we will create validated known good power
models for a variety of these approaches.
Interface: To separate the gem5 implementation from the
power model, in Python we a flag that takes input from the
user (Designer Choice) to pick between different known good
power models that have been integrated into gem5. Thus,
if a user wants to utilize two different power models with
the same system configuration, all they need to do is change
the Designer Choice flag. Likewise, users can also choose to
utilize different power models for different components (e.g.,
for different CPUs in the system).

Overall, our approach has two main benefits. First, since
defining a power model per component uses gem5’s scripting
interface, researchers can change the underlying power model
by changing the Python code. For example, if a user wants
to change the Functional Unit or ALU power models, they
could do change the corresponding dynamic power values in
Python. Likewise, if the user wants to create a new power
model, they can add this as another option the Design Choice
logic can select, without needing to modify the underlying
gem5 simulator. Furthermore, since it is simpler to implement
power modeling for components of interest, the designer can
specify what granularity to model power and report results.
Thus, users can either create their own power models or select
from our known good power models like McPAT. Accordingly,
researchers are neither restricted to certain power modeling
tools, nor required to make their own. Instead they can select
the power model which best suits their needs.

IV. CONCLUSION

Co-designing systems for both power and performance is
paramount. High fidelity, open source tools like gem5 are
critical in this process, because they allow researchers to
determine how effective their optimizations early in the design
stage. However, these tools are facing challenges from both
increasingly heterogeneous systems and power modeling tools
that are struggling to keep pace. Accordingly, we propose to
decouple how these tools model power from the power models
using an open source, flexible Python-based interface. This
allows users to integrate both existing and novel power models
into gem5, without requiring complex simulator changes. In
turn, this enables researchers to more easily develop efficient
power models for these increasingly heterogeneous systems.
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